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1. Introduction 

A considerable amount of research has focused on characterizing travel movements 

(Mckercher & Lau, 2008; Vu, Li, Law, & Ye, 2015). A comprehensive understanding of travel 

movements within a destination provides fundamental insights into tourist behavior, and such 

insights are directly applicable to destination management activities such as planning, product 

development, transport management, attraction planning, and accommodation development 

(Mckercher & Lau, 2008). Big data representing human mobility that is mostly generated from 

mobile technologies and social media platforms offers unprecedented opportunities to tourism 

researchers as an innovative source of information for smart tourism. Thanks to the advancement 

of information technology, tourism researchers and marketers have identified travelers’ 

movement patterns (Gao et al., 2019; Mckercher & Lau, 2008; Rong et al., 2012; Huang & Wu, 

2012) through such measures as predicting next travel movement behavior (Zheng et al., 2017), 

exploring spatial interactions/destination value systems (Park et al., 2020; Stienmetz & 

Fesenmaier, 2019), and assessing activity preferences (Vu, Li, Law, & Zhang, 2019).  

Although a number of tourism studies have explored travel movement patterns (Lue et 

al., 1993), little research has focused on measuring the similarities between travel movement 

behaviors. Assessing the similarities in patterns of travel mobility is crucial for developing 

destination recommendation systems, which are key constituents for achieving smart destinations 

(Park et al., 2020). Trajectory similarity measures play an important role in trajectory mining to 

determine travel mobility (Xia et al., 2011). Assuming that the locations visited by travelers 

imply their interests and preferences (Li et al., 2008), trajectory similarity can identify travelers 



who exhibit similar movement patterns and, in turn, classify individuals who have similar 

interests and preferences based on homogenous groups of travel movement behaviors. This 

insight can be an underpinning of a real-time destination recommendation system. 

 Most extant studies of travel movement have focused on exploring the spatial features of 

travel trajectories that represent a sequence of places visited by travelers—that is, although the 

relevant literature has explored the spatial process, an approach to considering the temporal 

(time) dimension is limited. Travelers use their time to conduct diverse activities at their 

destinations, and such usage of time is highly heterogeneous (Xu et al., 2020). This notion 

implies that considering the spatial process to understand travel movement patterns provides a 

partial understanding of travel behavior. Indeed, the current research fills this research gap by 

considering the spatial and temporal aspects in estimating trajectory similarity. 

The current research applies graph theory, which is the foundation of network science, to 

elucidate travel movement patterns (Hu et al., 2019). Since tourism is a complex system in 

nature, quantitatively describing intrinsic knowledge from tourism big data analytics and 

multifaceted travel flows is a critical issue (Baggio et al., 2010; McKercher, 1999). Graph theory 

facilitates the illustration of complex travel mobility via vertices (places visited by travelers) and 

edges (directions of travel flow) through a mathematical theory. Travel patterns are highly 

divergent—e.g., there are substantial variations in the number of visited places and the 

directional sequences of places—and thus, graph-based spatiotemporal analytics should function 

as a guide for discovering insights by considering different mobility contexts.  

 Thus, the purpose of current research analyzing mobile sensor big data is to (1) propose 

the trajectory similarity of travel mobility by considering the spatial and temporal dimensions of 

travel flow and (2) adopt graph theory to gain important knowledge of in-transit travel behavior. 



This work provides important contributions to tourism knowledge. In particular, along with 

extant studies that identify key travel patterns, this study suggests an innovative approach to 

assessing trajectory similarity that reflects the potential of data-driven clustering methods. 

Indeed, as opposed to the extant literature on identifying collective travel movement patterns, 

this trajectory similarity study performs a pairwise comparison of comprehensive travel 

movement patterns at the individual level not only to identify key behavioral patterns but also to 

classify travelers who show similar behaviors. In addition, the graph theory approach guides the 

characterization of complex destination systems through the lens of travel flow. This research 

demonstrates the applicability and existence of a scaling law of network science in travel 

mobility as demonstrated by heavy-tailed distribution and spatial heterogeneity (Jiang, 2018).  

 

2. Literature Review 

2.1. Tourist Mobility 

By definition, travel includes spatial movements for any purpose and duration from the 

place where a person lives to a single or multiple destination. Moving from one attraction to 

another within a destination is also regarded as travel (Hwang et al., 2006; Leiper, 1979). This 

definition implies that travel behavior is fundamentally composed of three dimensions: the 

“what” (e.g., activity), the “when” (temporal aspect), and the “where” (spatial aspect) (Shoval & 

Isaacson, 2007). Travel behavior is closely related to the fundamental problem in the economics 

of tourism attractions and experiences that will be used to identify the current market condition 

and predict the future flow of travelers. Therefore, tourist movement or mobility should be one 

of the critical aspects of understanding the various purposes of destination marketing 



organizations (DMOs), i.e., planning, management, and destination marketing (McKercher & 

Lau, 2008; Park et al., 2020).  

Previous research has shown that travelers typically move through several attractions 

within a given time and space that are the basic building blocks of travelers’ experiences 

(Stienmetz et al., 2020; Zach & Gretzel, 2011). Scholars have demonstrated the effectiveness and 

usefulness of applying knowledge regarding tourist behavior, particularly tourist mobility, to 

managing, planning, and marketing tourism destinations. For example, Stienmetz and 

Fesenmaier (2019) emphasized that aggregated travelers’ activities reflect value cocreation 

processes between the supply and demand sides of a destination, leading to a “network 

orchestrator” approach in destination management. Zhang, Li, and Su (2017) suggested effective 

theme park attributes and spatial design by examining visitors’ movements in a theme park. Vu, 

Li, Law, and Zhang (2018) provided marketing implications for international travels by 

discovering sequential travel patterns and strong associations among tourism destinations from 

geotagged photos via sequential rule mining. Park et al. (2020) identified several popular tourist 

attractions and spatial interactions across hot spots in travel destinations that will be used as the 

foundation for tourism design and planning.  

The inter- and intra-destination movement patterns of tourists have been studied at 

different scales: regional, national, and global. Lue et al. (1993) conceptualized the role and 

structure of multi-destination trips and identified five distinctive spatial movement patterns of 

pleasure travelers (i.e., single destination, in transit, base camp, regional tour, and trip chaining). 

Lew and McKercher (2006) proposed four types of territorial models that reflect the effects of 

distance and intervening opportunities (e.g., transportation and time budget) and three types of 

linear path models showing tourists’ movements and spatial patterns based primarily on the 



geography of a destination. Although some variations exist, follow-up research in tourism studies 

has repeatedly confirmed the findings of earlier studies. For example, McKercher and Lau 

(2008) identified 11 unique movement styles of Hong Kong visitors that are largely influenced 

by territoriality and intensity of consumption (e.g., number of stops and activity participation). 

Their study supported the territorial models proposed by Lew and McKercher (2006); however, 

linearity was not observed in the obtained data. Park et al. (2020) presented evidence of circular 

loop patterns (or the base camp model), a linear point-to-point chaining pattern, and radiating 

hubs by applying sequential pattern-mining analytics to the mobile big data of international 

tourists. 

The advancement of information technology allows researchers to utilize more diverse 

data sources than direct methods (e.g., observation, survey, diary). Recent studies have applied 

advanced tracking technologies (e.g., GPS, Wi-Fi, and Beacon) and social media posts (e.g., 

geotagged photos) (Wong et al., 2017). Advanced tracking methods are less burdensome to 

participants and relatively less interrupted by external situations, allowing researchers to avoid 

any potential biases during data collection (Raun et al., 2016; Shoval & Isaacson, 2007). 

However, social media data (e.g., geotagged information) exhibits several limitations in 

delineating travel movements within a destination, i.e., data sparsity, selection bias, scarcity of 

sources, and incorrect information (Girardin et al., 2008; Wong et al., 2017). Mobile phone data, 

on the other hand, helps researchers to overcome such limitations of social media data in terms 

of (1) greatly improved spatial and temporal accuracy, (2) population-like sample, (3) extensive 

sampling/tracking period, (4) relative lack of selection bias, and (5) ease of data collection (Park 

et al., 2020; Raun et al., 2016). In other words, unlike geo-tagged information posted on social 

media, which is solely reliant on extremely few records for only selected travelers, mobile phone 



data often contains almost the entire population as a sampling frame along with its spatial and 

temporal movement information. However, mobile phone data generally includes anonymized 

user IDs, spatial and temporal information, or some additional information depending on the 

purpose of the study (i.e., nationality in the current study), indicating that no other personal 

information is available due to the privacy issue (Li, Xu, Tang, Wang, & Li, 2018).  

Through these devices and data, tourism researchers can effectively obtain individuals’ 

spatial and temporal positions while traveling and then investigate travelers’ movements at a 

destination with considerable detail and accuracy. Methodologically, data obtained from mobile 

location–based systems provides new opportunities for modeling the spatiotemporal behavior of 

travelers at a destination. In particular, the mobile sensor data is suitable for measuring trajectory 

similarity because numerical information for a trajectory is continuous as opposed to that 

collected from social media (e.g., Flickr, TripAdvisor) (Yuan & Raubal, 2014). Specifically, 

social media data cannot accurately delimitate movement trajectories and similarities between 

trajectories due to data sparsity issues (e.g., few records for individuals and slightly different 

time frames among individuals). However, mobile phone data, which contains spatial and 

temporal information in a continuous form with the same spatial and temporal resolution, enables 

researchers to identify movement trajectories of individuals throughout their trips and then 

quantify the similarities between users’ movement trajectories. 

With these advantages of mobile phone data, several studies have already utilized mobile 

phone data in accurately measuring tourist flow or tourism destination (e.g., Raun et al., 2016; 

Shoval & Isaacson, 2007). In earlier studies, Baggio and Scaglione (2018) showed the value of 

mobile phone data in monitoring and identifying strategic tourist flow, which can improve the 

governance of local DMOs. In recent years, Park and his colleagues utilized a mobile positioning 



dataset to detect the spatial structures of tourism destinations using trajectory mining (Park et al., 

2020), the time use of tourists at the destination (Xu et al., 2020), and the heterogeneity and 

collective dynamics of inbound tourist movements (Xu et al., 2021). These recent studies built 

upon previous empirical works, which focused more on the movement patterns, by utilizing 

tourist movement patterns from mobile positioning data to detect various characteristics of 

tourist movements and destinations. Thus, the present study focuses primarily on the similarity 

of travel trajectories within the destination by analyzing mobile positioning data in terms of 

graph theory. 

 

2.2. Graph Theory 

Graph theory is the study of graphs based on a mathematical structure that is represented 

by a set of nodes (vertices) and links (edges) that connect pairs of nodes (Hayes, 2000; Riaz & 

Ali, 2011). A graph or network in graph theory represents the relationship between nodes 

(vertices) and their connections (links or edges). Studies in tourism and geography generally 

consider points in space (locations, areas, or regions) as nodes and pathways (fluxes, exchanges, 

or spatial interactions) and as edges (Phillips et al., 2015). A graph-based approach has been used 

in many disciplines (e.g., computer science, geography, and transportation) to quantify structural 

and functional connectivity within a network system based on nodes and edges. In such 

applications, nodes frequently contain information about qualitative and quantitative 

characteristics, and edges exhibit unique properties, i.e., weights and directions (Dale & Fortin, 

2010).  

The advancement and widespread application of graph theory have inspired the field of 

network science. Graph theory specifically describes a well-structured graph, i.e., one with a 



common shape and relatively small size, whereas network science focuses on structurally 

complex and unpredictable graphs (or networks) (Derrible & Kennedy, 2011). Consequently, 

studies in network science emphasize the dynamic properties of real-world networks and 

consider networks a dynamic system (Newman et al., 2006). A network or system often involves 

nonlinear interactions among elements, and each element will react based on its historical 

behavioral pattern and locally available information (Baggio et al., 2010). 

In recent years, tourism researchers have utilized graph theory and network science to 

quantify functions and relationships among entities or components within the tourism and 

hospitality industries, including structural complexity, diversity, dynamic complexity, and 

interactions (Strogatz, 2001). Tourism functions are frequently described in a nonlinear and 

dynamic manner, making them suitable for network theory (McKercher, 1999). By applying 

graph theory and network science, tourism destinations have been described as a complex 

network system consisting of various interrelated components, e.g., natural resources, man-made 

attractions, and service providers (Baggio et al., 2010; Miguéns & Mendes, 2008; Xu et al., 

2020). A network approach has further modified the conceptualization of tourism destinations 

based on the notion of “tourist-activated networks” and a market-oriented system wherein 

tourists’ behavior and flow at a destination activate the supply-and-demand system of tourism 

destinations (Stienmetz & Fesenmaier, 2019; Zach & Gretzel, 2011).  

A core feature of networks in the real world (i.e., scale-free networks) perfectly fits 

tourist mobility within a tourism destination, allowing researchers to determine the structural 

properties and characteristics of tourism destinations on the basis of tourists’ flows. Real 

networks are neither completely random nor completely regular, indicating that links between 

nodes are not created randomly (Wang & Chen, 2003; Watts & Strogatz, 1998). This 



characteristic implies that tourist movements between places may reflect the popularity and 

necessity of such routes depending on tourists’ motives or locations’ functions within tourism 

destinations. Scholars have recently observed the uneven distributions of connections in many 

large-scale complex networks in the real world. For example, if a certain tourism attraction or 

place (i.e., an actor or node in the network theory) attracts more tourists or transportation 

connections with other places (i.e., ties and connections in the network theory), then that 

particular place can easily become a well-connected hub with a large number of ties (Milo et al., 

2002). In the real world, the connections or nodes of each destination (or the connectivity of each 

node) follow a power law distribution and are independent of network scale (i.e., the size of the 

entire network). Consequently, network science (i.e., scale-free networks) helps tourism 

researchers understand the spatial structure and complexities of tourism destinations (e.g., 

Baggio et al., 2010; Miguéns & Mendes, 2008). These characteristics can explain the evolution 

of a tourism destination, which consists of several popular tourist spots and changes through the 

lens of travel flow. 

Despite their widespread applications, many earlier studies that focus on tourist mobility 

using graph theory have critical limitations with regard to (1) weights and directions (i.e., edge 

contains weights and directions) and (2) sampling (i.e., extremely sparse geotagged or survey 

data) (Girardin et al., 2008; Park et al., 2020; Wong et al., 2017). First, many earlier studies 

using graph theory often neglected the importance of the directions of tourist flow, possibly due 

to the data availability. However, the direction of tourist flow might be an important issue in 

managing the tourism destination or providing the proper transportation services at the 

destination. Indeed, links and edges have unique properties (i.e., weights and directions) for 

understanding tourist movement patterns within a destination (Dale & Fortin, 2010). Such 



information helps researchers reconstruct accurate tourist mobility patterns, including 

movements between locations and their sequence and, more importantly, the similarities between 

travel trajectories. Second, social media data, which is widely used these days, does not always 

cover the entire population, and it includes a subset of users who agree to share their locations, 

thus presenting a potential bias of the population. Such practices indeed bring about a data 

sparsity issue which hinders the accurate estimation or identification of the entire tourist flow at 

the destination (extremely little coordinate information for individuals). To resolve the 

aforementioned challenges, the current study utilizes mobile phone sensor data as another type of 

data source for identifying the sequential behavioral patterns of tourists within a destination. The 

mobile sensor data collected from a massive sample size records the comprehensive movement 

of international travelers in an automatic way rather than relying on information that travelers 

have spontaneously shared. Baggio and Scaglione (2018) demonstrated that network and graph 

theory work well with large amounts of data such as mobile phone data while depicting visitor 

flow, and the authors emphasized that visitor flow identified by mobile phone data can facilitate 

development of innovative tourism products and services.   

 

3. Methodology 

3.1. Data Collection 

The researchers collaborated with one of the largest mobile communication companies in 

the Republic of Korea (hereafter Korea) in conducting a tourism big data project and were able 

to access the mobile sensor data of international travelers who visited Jeonju City in Korea in the 

last 12 months (i.e., from August 2017 to July 2018). The international travelers were defined as 

those travelers who used a mobile roaming service while visiting the city. Jeonju is located in the 



southwestern part of Korea, covering an area of 206.22 km2. Jeonju is one of the most popular 

and attractive cities for tourists due to its traditional culture and distinctive food as a “Creative 

City of Gastronomy” and part of the “Creative Cities Network” of the United Nations 

Educational, Scientific, and Cultural Organization. 

The mobile data was collected from 18,584 mobile users, generating 202,255 mobile 

sensor records. The dataset represents a tracking trajectory that comprises four elements: user ID, 

nationality, spatial (coordinate) information, and temporal information (time of arrival at and 

departure from a certain location associated with the corresponding coordinates). Coordinate 

information refers to the locations of cellphone towers, with 782 cellphone towers covering a 

radius of 181 m on median nearest distance. Table 1 provides an example of a user’s mobile 

sensor data. 

 

[Please insert Table 1 about here] 

 

For example, User ID 1 visited a place on 127.*** longitude and 35.*** latitude at 15:43 

on November 25, 2017, and stayed there for 10 min. Then, the traveler moved to another location 

described as 127.*** longitude and 36.*** latitude at 17:06. This information also means that 

the traveler took 73 min to move from the first place (coordinate of cell towers: 127.*** of 

longitude, 35.*** of latitude) to the second place (coordinate of cell towers: 127.*** of 

longitude, 36.*** of latitude). If a traveler stays in a same location, the timestamp keeps 

recording the duration of stay with constant coordinate information. The fine-grained mobile 

sensor data that reflects the discrete spatiotemporal movement records allows researchers to 

comprehensively discover the trajectory information of individual travelers at a destination (e.g., 



Jeonju). Notably, no information that can potentially enable researchers to identify individuals, 

such as gender, name, and phone number, was collected. 

 

3.2. Data Analysis 

This study implements a series of mobile big data analytics to explore trajectory 

similarity measurements, as shown in Figure 1.  

 

[Please insert Figure 1 about here] 

 

 

3.2.1. Trajectory synthetization  

Trajectory synthetization identifies sequential locations (coordinates) from individual 

trajectories and extracts the corresponding arrival and departure times for each location. The 

extracted individual trajectories are essential for calculating travel time between two locations 

(coordinates) in the full trajectory. Suppose that two people are traveling. Traveler 1 visited a, b, 

c, d, and e places, and Traveler 2 visited, a, b, c, d, e, and f places. Two trajectory extractions can 

be represented as follows: 

traj1 = <a
 ∆𝑡1 
→  b

 ∆𝑡2 
→  c

 ∆𝑡3 
→  d

 ∆𝑡4 
→  e>, 

traj2 = <a
 ∆𝑡1

′ 
→   b

 ∆𝑡2
′ 

→   f
 ∆𝑡3

′ 
→   c

 ∆𝑡4
′ 

→   d
 ∆𝑡5

′ 
→   e

 ∆𝑡6
′ 

→   𝑓>, 

where traj1 and traj2 refer to the trajectories of Users ID1 and ID 2, respectively.  

 

The number of place names (e.g., a, b, c, and so on) indicates the number of places 

visited successively by a user in the corresponding locations of cellphone towers. Given the 



temporal information, such as the arrival and departure times at each cellphone tower for each 

traveler, the researchers can estimate the time interval between the locations of two cellphone 

towers (or two places visited in such sequence). That is, ∆𝑡𝑖 and ∆𝑡𝑗
′ denote the ith or jth transfer 

times of traj1 and traj2 between two locations.  

 

3.2.2. Trajectory matching 

Similar trajectory: Similar trajectory matching detects pairs of trajectories (traj1 and traj2) 

as similar if and only if they satisfy certain conditions such as spatial and temporal constraints. 

Spatial constraint: Spatial path (trajectory) is one of the primary spatial movement 

parameters for spatial similarity measures and is an ordered list of actually recorded locations 

(e.g., coordinates of cellphone tower). A directed straight line can connect each two consecutive 

recorded locations in a trajectory. In a similar trajectory, more than one (at least two) location 

with the same coordinates should exist in a pair of trajectories, and the visiting order in this pair 

of trajectories must be similar (Li et al., 2008).  

Given two trajectories, traj1 is the trajectory of User ID 1 with length m, and traj2 is the 

trajectory of User ID 2 with length n. 

 

traj1 = < a1

∆𝑡1
→ a2 

∆𝑡2
→ …

∆𝑡𝑚−1
→    am>, 

traj2 = < b1

∆𝑡1
′

→  b2 
∆𝑡2

′

→  …
∆𝑡𝑛−1

′

→    bn>. 

𝑎𝑖 = (𝐿𝑜𝑛𝑖 , 𝐿𝑎𝑡𝑖) 
𝑏𝑗 = (𝐿𝑜𝑛𝑗 , 𝐿𝑎𝑡𝑗) 

𝑎𝑖 = 𝑏𝑗 = (𝐿𝑜𝑛𝑖 = 𝐿𝑜𝑛𝑗 , 𝐿𝑎𝑡𝑖 = 𝐿𝑎𝑡𝑗) 

Where 𝑎𝑖 denotes the ith location (coordinate of cellphone tower) for User ID 1 in Jeonju, 𝑏𝑗 

denotes the jth location (coordinate of cellphone tower) for User ID 2 in Jeonju, and 𝐿𝑜𝑛 and 𝐿𝑎𝑡 
correspond to the longitude and latitude of a cellphone tower, respectively. 



 

Temporal constraint: Temporal duration (e.g., transition time) is one of the important 

derived movement parameters for temporal similarity measures. It is obtained from the 

corresponding arrival and departure times for each location in a trajectory. A quantitative 

measure is the difference between two temporal durations (Ranacher & Tzavella, 2014). The 

absolute value of the difference between two users’ transition times should be within a 

predefined threshold, denoting that the two users have similar movement times between the same 

regions (Li et al., 2008). 

 

∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n, |∆ti − ∆tj
′| ≤ tth, 

where ∀ indicates all the coordinates in a trajectory; ∆ti is the ith transfer time of traj1 between 

two locations; ∆𝑡𝑗
′ is the jth transfer time of traj2 between two locations; tth refers to the time 

threshold; and m and n are the lengths of traj1 and traj2, respectively. 

 

For example, the two preceding trajectories (e.g., traj1 and traj2) can be represented as 

follows: 

traj1 = <a
56 min
→    b

136 min
→     c

78 min
→    d

14 min
→    e>, 

traj2 = <a
34 min
→    b

67 min
→    f

31 min
→    c

86 min
→    d

3 min
→   e

8 min
→   d

39 min
→    f>, 

where a, b, and so on represent the accurate coordinates of the cellphone towers in traj1 and traj2. 

The order of the nodes represents the visiting order of users in their trajectories. 

 



In terms of spatial constraints, finding the same pair of sequential trajectories is required. 

In this example, <a
    
→b>, which satisfies the spatial constraint. Once the spatial condition is 

satisfied, the temporal constraint is then considered with 30 min as the threshold (Park et al., 

2020). Based on local knowledge, there are basically three ways for travelers to move within the 

city: bus, taxi, and walking. The travel time between one of the most famous travel attractions 

located in the north area (i.e., Deokjin Park) and another famous travel attraction (e.g., Hanok 

Village) in the south area by public transportation (i.e., bus) is around 25–30 minutes. When 

taking a taxi, it takes around 15 minutes, and when walking, it takes about 1 hour 20 minutes. So, 

even considering the farthest distance between two popular travel attractions, the difference of 

time transition when using public transportation (e.g., taxi or bus) is less then 30 minutes. This 

means that when travelers use public transportation to move within Jeonju city, the transition 

time is very likely to be within the threshold, which meets the temporal constraint. In addition, 

the threshold (30 min) has been decided following the guidance of mobile big data analysis 

developed by Korea Tourism Organization and relevant literature (Bifulco et al., 2010; Jongno 

City Office, 2019; Park et al., 2020). They considered the 30-min threshold as an indication to 

discern whether a traveler is engaged in a travel activity at the cell. 

Considering the preceding example, the transition time from “a” to “b” for traj1 is 56 min 

and for traj2 it is 34 min, resulting in a 22-min difference (56 min – 34 min). Thus, the similar 

trajectory satisfies the temporal constraint, which detects a two-length (a
    
→b) similar trajectory. 

From the perspective of graph theory, a directed network from vertex a to vertex b is shown.  

 

3.2.3. M-length similar sequence 



The length of a similar trajectory indicates the number of locations (vertices in graph 

theory) visited in a similar sequence (edges in graph theory) by a pair of travelers (Li et al., 

2008). M refers to the numbers of similar sequences that satisfy the two constraints discussed 

above, labeled as a m-length similar sequence. Two rules—namely, trajectory extension and 

pruning—must be followed when calculating a m-length similar sequence.  

Trajectory extension: M-length similar trajectory refers to the longest common trajectory 

in a pair of trajectories (Li et al., 2008). Thus, if the common trajectories identified in a pair of 

trajectories are shorter than the longest common trajectory, then they will be skipped. 

Trajectory pruning: The previous longest common trajectory will be replaced by the 

newer longest common trajectory (Li et al., 2008).  

In other words, trajectory extension is performed to detect all the elements (locations with 

transition times) which satisfy spatiotemporal constraints but do not need to be drawn from the 

contiguous positions in pairwise trajectories, whereas trajectory pruning is done to detect the 

maximum-length (m-length) similar sequences. 

In the following successive sequences (traj1 and traj2), in addition to trajectory <a
    
→ b>, 

another pair of trajectories (<b
    
→ c>) satisfies the spatial constraint. The temporal constraint is 

also satisfied on the basis of the 18-min difference in the time interval between traj1 (136 min) 

and traj2 (67 min + 20 min remaining at “f” + 31 min). By combining sequential trajectories 

<a
    
→ b> and <b

    
→ c> that satisfy the spatial and temporal conditions, a three-length similar 

sequence <a
    
→b

    
→ c> is detected, replacing the two-length similar sequence. The three-length 

similar sequence can be represented as follows:  

 

traj1 = <a
56 min
→    b

136 min
→     c

78 min
→    d

14 min
→    e>, 



 

traj2 = <a
34 min
→    b

67 min
→    f

31 min
→    c

86 min
→    d

3 min
→   e

8 min
→   d

39 min
→    f>. 

 

The calculation continues until the two (spatial and temporal) constraints are not satisfied. In 

accordance with the rule of “trajectory pruning,” a five-length similar trajectory between traj1 

and traj2 is detected, and its composition is <a → b → c → d → e>.  

 

3.2.4. Algorithm for assessing similar trajectory matching: Longest common subsequence 

(LCSS) algorithm 

To calculate m-length similar trajectory matching, this research applied an innovative 

algorithm-labeling method, the LCSS algorithm (Toohey & Duckham, 2015). This algorithm 

aims to discover the longest common subsequence in a set of full sequences (or trajectories). The 

fundamental idea is to match the common subsequences appearing in both full sequences to 

eliminate outliers (i.e., some elements remain unmatched) (Bergroth et al., 2000).  

There are a couple of benefits in adopting the LCSS algorithm. First, the LCSS model 

supports trajectories of different/variable lengths and is good for processing with noisy trajectory 

data. Most travelers undertake multi-destination trips (i.e., they visit more than one place) (Lue et 

al., 1993; Tideswell & Faulkner, 1999). It is very common to have multi-destination trajectories 

with different lengths and many outliers (unmatching/noise points). LCSS is almost immune to 

outliers (noise points) because the algorithm is designed to match two trajectories by allowing 

them to stretch without rearranging the order of the elements (locations with transition times). 

Second, the LCSS model can analyze detailed trajectories without many transformations 

applied to the original trajectories. To reduce the data size, plenty of previous research has 

 
(20 min)
→      



applied the clustering methods to movement data (e.g., Andrade et al., 2020; Li et al., 2008). 

However, clustering of the trajectory will result in significant loss of information. In this 

research, each matching trajectory consists of sequential locations (coordinates of cellphone 

towers) at every change in direction or velocity (transition time). The matching trajectories are 

nearly the original trajectories. The LCSS algorithm facilitates for generating good performance 

for uncovering the travelers’ trajectories with multiple elements such as locations and transition 

times. However, other trajectory similarity measures (e.g., Euclidean distance measures, dynamic 

time warping–based measures [e.g., DTW, PDTW], edit distance–based measures [e.g., EDR, 

ERP], etc.) are sensitive to the detailed travelers’ trajectories with multiple elements (Wang et 

al., 2013).  

More specifically, Z = <z1, z2, …, zl> in all the common subsequences of the two given 

trajectories, traj1 = <a1, a2, …, am> and traj2 = <b1, b2, …, bn> (∀0 ≤ i ≤ m, ∀0 ≤ j ≤ n, ∀0 ≤

l ≤ k). Dynamic programming is generally applied to calculate LCSS (Cormen, 2013):   

A = <a1→a2→…→am>, 

B = <b1→b2→…→bn>, 

LCSS (A, B) = Z = <z1→z2 →…→zk>, 

where ai, bj, and zl are the ith, jth, and lth places visited in sequence A, sequence B, and the 

longest common subsequence Z, respectively; m and n are the lengths of sequences A and B, 

respectively; and z is the length of the longest common subsequence (Z) between sequences A 

and B.  

 From the recursion principle of the LCSS algorithm, if sequence A or B is empty, then 

the longest common subsequence of sequences A and B is 0. If the corresponding elements at the 

ends of sequences A and B are the same, i.e., am = bn, then the longest common subsequence of 



sequences A and B is the longest common subsequence of sequences Am−1 and Bn−1 plus 1. If the 

corresponding elements at the end of sequences A and B are different, i.e., am ≠ bn, then the 

longest common subsequence of sequences A and B is the maximum of the longest common 

subsequence of sequences Am and Bn−1 and the longest common subsequence of sequences Am−1 

and Bn.  

LCSS (Am, Bn) = {

0, 𝑖𝑓 𝑚 = 0 or n = 0  
1 + 𝐴𝑚−1, 𝐵𝑛−1, 𝑖𝑓 𝑚, 𝑛 > 0 𝑎𝑛𝑑 𝐴𝑚 = 𝐵𝑛

max(𝐴𝑚−1, 𝐵𝑛, 𝐴𝑚, 𝐵𝑛−1) , 𝑖𝑓 𝑚, 𝑛 > 0 𝑎𝑛𝑑 𝐴𝑚 ≠ 𝐵𝑛

 (3) 

 

This recursive algorithm continuously performs until it finds the longest common 

sequence between a pair of sequential trajectories in the entire sample. Consequently, over 345 

million combinations of trajectory comparisons were conducted in this research. The LCSS 

algorithm has been used in similar trajectory matching areas such as human mobility (Vlachos et 

al., 2005), transportation vehicle mobility (Kim & Mahmassani, 2015), and animal mobility 

(Cleasby et al., 2019).  

 

3.2.5. Post-normalized trajectory similarity (PNTS) 

After estimating LCSS, which determines m-length similar trajectory, this section 

calculates the similarity scores and uses them to classify travelers from different nationalities. In 

particular, the similarity score indicates the levels of homogenous travel flow between pairs of 

travel trajectories.  

To estimate trajectory similarity, this study calculated PNTS, which is represented as 

follows:  

The PNTS between Trajectories A and B was proposed by Zhao, Yuan, Peng, and Wang (2002).  



Trajectory A = <a1→a2→…→am>, 

Trajectory B = <b1→b2→…→bn>, 

LCSS (A, B) = Z = <z1→z2 →…→zk>, 

PNTS p (Am, Bn) = 
LCSS (A,B)

max  (𝑚,𝑛)
 ∈ [0, 1], 

where a1, a2, …, am are the locations in Trajectory A; b1, b2, …, bn are the locations in Trajectory 

B; m and n are the lengths of Trajectories A and B, respectively; LCSS (A, B) is the length of the 

longest common subsequence of Trajectories A and B; and max (m, n) refers to the maximum 

trajectory length between Trajectories A and B.  

The PNTS aims to compare the similarity between trajectories of different lengths based 

on similarity scores obtained from LCSS. In this sense, the normalization from the m-length 

similar trajectory is required to make it comparable. Specifically, the longer the similar trajectory 

is, the higher the similarity score (PNTS) the similar trajectory can obtain, while the higher the 

similarity score (PNTS) is, the more similar the pairwise trajectories are. 

The PNTS scores of each nationality were used to perform (1) heat map analysis, which 

presents similar trajectory matching between a pair of nationalities, and (2) agglomerative 

hierarchical clustering, which groups nationalities on the basis of similarity scores (Xu et al., 

2020). Cluster analysis divides a universal set into subsets (Hastie et al., 2009), and it provides 

widely used unsupervised market segment techniques (D’urso et al., 2013). Notably, we chose 

agglomerative hierarchical clustering over other alternatives (e.g., k-means) for two reasons. 

First, it adopts a bottom-up approach, and the algorithm does not require predefining of the total 

number of clusters. Second, agglomerative hierarchical clustering enables the examination of 

how individual elements are grouped at different steps of the algorithm (through a dendrogram), 

providing a comprehensive picture of similarities and differences across nationalities.  



  



4. Results 

4.1. Temporal travel demand 

Figure 2 presents the number of international travelers who used mobile roaming services and 

visited Jeonju. April and July are top two months when the largest numbers of inbound tourists 

visited the city. By contrast, January and February are the months when the lowest numbers of 

international travelers visited Jeonju. This finding shows the existence of tourist demands across 

seasonal levels. Summer is apparently the peak season, and winter is the shoulder season. 

 

[Please insert Figure 2 about here] 

 With regard to the days of the week, international travelers are likely to visit Jeonju on 

Friday (n = 20,834), followed by Thursday (n = 20,469) and Saturday (n = 20,375). Interestingly, 

the result shows that Sunday is the day with the lowest number of international travelers visiting 

the city.  

 

4.2. Number of places visited / transition time by travelers 

Figure 3 presents numbers of places (cellphone towers) travelers have visited in daily movement. 

Approximately, 38% of travelers tend to visit a place covered by a single cellphone tower (about 

300m radius). About 60% of travelers are likely to visit places covered by up to two cellphone 

towers (about 600m radius). The frequency rapidly drops as the number of cellphone towers 

travelers visited increases.  

 

[Please insert Figure 3 about here] 



Checking transition time between each cellphone tower, it shows approximately 29 minutes of 

46,771 daily travel trajectory on average with 48 minutes in standard deviation.  

 

4.3. Length of Stay at the destination 

Next, this study analyzed length of stay by calculating the differences between the arrival 

date (the first time the digital footprint was observed at the city) and the departure date (the last 

time the digital footprint was observed at the city) of international travelers. Most travelers 

(98.7%) stay in Jeonju for less than 15 days (Figure 3). The majority of travelers stay in Jeonju 

for 1 days, and consistently, the average length of stay in the city is 2.7 days.  

 

[Please insert Figure 4 about here] 

 

4.4. Travel Mobility Models Based on Network Science Analytics 

From the data of total 782 cellphone towers, the weighted network of the destination presents a 

heavy-tailed distribution on the same line of network science (Baggio et al., 2010). Figure 5a 

presents the cumulative distribution function of vertex (or node) degree consisting of numbers of 

edges (spatial links by travel flow) at the X-axis and the cumulative probability of frequency at 

the Y-axis. Figure 5b shows the cumulative distribution function of weighted edges (or travel 

flow) consisting of weighted flows (the number of edges between cellphone towers taking into 

account the number of travelers exhibiting travel flow) at the X-axis and the cumulative 

probability of frequency as edges at the Y-axis. Understanding a log–log plots (Figure 5a and 

5b), the relationships are likely to be linear in a visual assessment. Furthermore, the statistical 

estimation demonstrates that the distributions follow the lognormal distributions. This means that 



travel flow exhibits a scaling law of complex network (power-law/lognormal distributions), as 

indicated by network science. In other words, few areas (the coverage of cellphone towers) 

attract a large number of visits while many areas attract few travelers, demonstrating the 

existence of spatial heterogeneity (Jiang, 2018). 

[Please insert Figures 5a and 5b about here] 

 

4.5. Similar Trajectory 

Table 2 presents the summary results of the m-length similar trajectory analysis by using the 

LCSS algorithm. Note that m-length denotes numbers of nodes in graph theory. The trajectory 

similarity has been applied to identify similar travel flow according to different numbers of 

nodes (i.e., identical places visited between two travelers). Notably, although the results of over 

nine-length similar trajectory exist, their frequency is insignificant to show the results. In 

particular, the number of similar trajectories with two to nine lengths accounts for 98% of the 

number of categories and international travelers (Appendix I). Thus, this study focuses on m-

length similar trajectories ranging from two to nine. Table 1 provides two measurements in 

accordance with the lengths of similar trajectories. For example, in the case of a two-length 

similar trajectory, 515,048 trajectories are identified, including 2,438 different types of 

trajectories. Overall, when the length of a similar trajectory is longer, less similar trajectories are 

identified. Based on the nature of complex destination networks, the results reveal a variety of 

categories of similar trajectory. The following section discusses the findings of the graph-based 

spatiotemporal analytics for semantic understanding of travel behaviors according to different 

M-lengths (i.e., vertices in graph theory).  

 



[Please insert Table 2 about here] 

 

4.5.1 Two-length similar trajectory 

The results of the two-length similar trajectory are presented in Figure 6a. The color changing 

from light gray to Mandarin black indicates the intensity level of the trajectories. Three key 

zones of high density are evident, namely, Jeonju Hanok Village, Deokjin Park (or Chonbuk 

National University), and the train station. For further details, Figure 6b presents the top 20% 

two-length similar trajectories, which appear at a popular area of Jeonju Hanok Village. On the 

basis of the semantic meaning, travelers tend to use a train to visit Jeonju City. When exploring 

the most frequent two-length similar trajectories, the associations represent the flow between a 

traditional restaurant and the entrance to Jeonju Hanok Village or between a traditional 

restaurant and a popular travel attraction (e.g., Jeondong Catholic Church).  

 

[Please insert Figures 6a and 6b about here] 

 

4.5.2 Three-length similar trajectory  

Total 2,950 types of three-length similar trajectories are identified, not only representing 

identical orders of places visited but also taking similar travel time in the daily travel trajectory. 

Figure 7a presents the top three three-length similar trajectories. In particular, Figures 7b, 7c, and 

7d show each selective trajectory from Figure 7a. Compared with the patterns in two-length 

similar trajectory, the movement patterns in three-length similar trajectory do not increase the 

number of places visited by travelers. Instead, they exhibit a circular (or loop) movement pattern. 

That is, three-length similar trajectory essentially presents loop patterns leaving the starting point 



and returning to the origin point. On the basis of local knowledge, most trajectories are observed 

at Jeonju Hanok Village along with a traditional restaurant, a traditional market, and an area that 

includes a number of accommodation facilities.  

[Please insert Figures 7a, 7b, 7c, and 7d about here] 

 

4.5.3 Four-length similar trajectory 

There are total 2,349 types of four-length similar trajectory. From the features of the visited 

places (Figure 8), the patterns in four-length similar trajectory have an additional point at Jeonju 

train station compared with three-length similar trajectory. Moreover, four-length similar 

trajectory represents a travel chain model in which travelers visit places in sequence, similar to a 

chain, without returning (Lue et al., 1993). Three key patterns exhibit different directions of the 

chain model comprising Jeonju train station and Jeonju Hanok Village.  

 

[Please insert Figures 8a, 8b, 8c, and 8d about here] 

 

4.5.4 Five-length similar trajectory 

The patterns of five-length similar trajectory apparently have two distinctive routes. A pattern 

similar to three-length similar trajectory starting from Jeonju train station is observed. Another 

route shows the travel movement starting from the western part of the city and stopping at its 

center (i.e., the area of Jeonju city hall). Essentially, five-length trajectory has circular and chain 

pattern models (Park et al., 2020): (1) arriving at the city by train and traveling to a key travel 

attraction (Hanok Village) and leaving the city by train, i.e., labeled as a day trip (Figure 9a); and 



(2) departing from an accommodation and traveling to the city center, referred to as a stay-over 

trip that involves extensively exploring the city (Figure 9b). 

 

[Please insert Figures 9a, 9b, and 9c about here] 

4.5.5 Six-length similar trajectory 

Two key patterns are observed in six-length similar trajectory (Figures 10a, 10b and 10c). Six-

length similar trajectory appears as a chain model traveling extensively at a part of Hanok 

Village from north to south. Compared with five-length similar trajectory, six-length similar 

trajectory has an uplinked mutual dyad model wherein the mutual dyad (i.e., repeated visitations) 

is observed ahead of the chain model (Figure 10a) (Lew & McKercher, 2006).  

[Please insert Figures 10a, 10b and 10c about here] 

 

4.5.6 Seven-length similar trajectory 

The results show three types of linear chain models in similar trajectories. In terms of semantic 

meaning, the patterns in seven-length similar trajectory involve travelers who like to eat 

authentic food (Figure 11b) and explore the city by visiting multiple places/attractions. The three 

key trajectories have different starting points, such as the central, northern, and western parts of 

Hanok Village. Interestingly, however, two other patterns (Figures 11c and 11d) reflect a 

centralized mutual dyad wherein the mutual dyad is located at the middle of the chain. This 

mutual dyad is observed at the area of Hanok Village. Travelers demonstrating the third pattern 

(Figure 11d) may exhibit high preference for experiencing traditional culture at a destination 

given that the trajectory includes Hanok Village at its middle and the Hanok living experience 

center at its end.  



 

[Please insert Figures 11a, 11b, 11c, and 11d about here] 

 

4.5.7 Eight-length similar trajectory 

Travelers that present eight-length similar trajectories are likely to visit another key travel 

attraction, such as Deokjin Park/Chonbuk National University, apart from Hanok Village (Figure 

12a). A couple of selective patterns (Figures 12b and 12c) represents a linear chain model. That 

is, travelers tend to stop over at popular places during the entire journey, leaving from a starting 

point (i.e., accommodation) to visit Deokjin Park/Chonbuk National University (northern part of 

the city) and finishing their trips by visiting Hanok Village.  

 

[Please insert Figures 12a, 12b, and 12c about here] 

 

4.5.8 Nine-length similar trajectory 

Travelers in this category are likely to extensively explore Jeonju City. Instead of spending most 

of their time at key travel attractions, these travelers tend to visit a variety of places and search 

for diverse activities in the city. Their movement pattern presents an alternative version of the 

base camp pattern (Lue et al., 1993) and/or a radiating hub (Lew & McKercher, 2006) where 

people make several trips from the hub. This trajectory includes multiple patterns, such as point-

to-point and circular loops.  

 

[Please insert Figure 13 about here] 

 



4.6 Trajectory Similarity-based Clustering analysis 

An intriguing question is whether travelers from close countries show similar trajectory patterns, 

i.e., whether tourists from close origin countries visit the destination in a similar way. To answer 

this question, we perform the clustering analysis based on the score of trajectory similarity. 

Figure 14 presents the result of the heat map analysis, which assesses the pair-wise comparisons 

of similar trajectory matching among different nationalities. Notably, the clustering result shows 

the top 16 countries/regions, explaining 91% of the total sample.  

 

[Please insert Figure 14 about here] 

The results show that travelers from the same countries/continents do not necessarily 

demonstrate similar travel behavior. In particular, the trajectory similarity of Chinese travelers 

does not exhibit high correlation with those from the same country. Instead, their similarity 

patterns tend to be more correlated with travelers from Austria and Hong Kong. Similarly, the 

travel trajectories of travelers from the USA are more likely to correlate with those from Hong 

Kong and Holland than with individuals from their own country. Meanwhile, travelers from 

Japan present high correlation with those from Austria, Hong Kong, and France. These findings 

imply that travel trajectories are more likely to be quite dynamic and individual behaviors rather 

than a collective understanding (Miller, 2004) 

Furthermore, HCA is conducted to identify segments with different similarity scores in 

accordance with various nationalities. The results consistently demonstrate that not all the near 

things are more related than distant things (Miller, 2004). In conclusion, six clusters are formed. 

Group 1 includes Austria; Group 2 includes Russia; Group 3 includes Hong Kong; Group 4 

includes Malaysia, France, the USA, and China; Group 5 includes Singapore, Canada, Japan, and 



Holland; and Group 6 includes Australia, the UK, Taiwan, Thailand, and Germany (see Figure 

15). That is, travelers from the same countries/continents do not necessarily show the similar 

travel patterns of movement. Their behaviors are dynamic and individual, which suggest to 

consider it as important standard to cluster travelers.  

 

[Please insert Figure 15 about here] 

 

5. Discussion 

Understanding travel mobility has elicited considerable attention among tourism scholars. 

The literature has extensively discussed movement patterns (Vu et al., 2018) and destination 

interactions from the perspective of travel flow (Xu et al., 2020). Along with the advancement of 

information technology, such as social media and mobile technologies, studies on travel mobility 

have remarkably evolved. Advanced technologies enable tourism researchers to obtain fine-

grained and large sets of data, encouraging the use of innovative analytics and another class to 

explain the social phenomenon. This study, which analyzes mobile sensor big data, suggests the 

method for identifying similar travel trajectories and illustrates such trajectories using graph-

based spatiotemporal analytics to gain insights from tourism big data analytics. Thus, this work 

provides important findings regarding trajectory similarity that consider the spatial and temporal 

dimensions in contrast with the analysis of movement patterns that focuses only on a sequence of 

spatial locations (e.g., Park et al., 2020). These insights, in recognizing travelers who follow 

similar movement patterns, should guide DMOs to execute data-driven (or flow-based) 

segmentation and suggest the foundation of destination recommendation systems, which are 

essential for smart tourism destinations.  



In terms of theoretical implications, the existing tourism literature has substantially 

investigated the patterns of travel movements in a conceptual (Lew & McKercher, 2006; Lue et 

al., 1993) and empirical manner (Vu et al., 2018; Zhao et al., 2018). These existing studies have 

focused on discovering collective movement patterns. However, the current research suggests an 

approach to measuring the degree and types of similar trajectory patterns by comparing a 

pairwise trajectory of individual travelers. This approach contributes to the literature on market 

segmentation by proposing a data-driven clustering method. A number of studies have suggested 

criteria for classifying travelers such as demographic characteristics and travel features. On the 

basis of the assumption that travel locations imply the interests and preferences of travelers (Li et 

al., 2008), this study demonstrates a potential for considering travel trajectory as a type of 

clustering method based on the similarity of travel movement. 

The extant tourism literature has largely discussed the sequential patterns of places 

visited by travelers (e.g., Mckercher & Lau, 2008; Park et al., 2020). However, the temporal 

dimension, which denotes the transition time of visiting travel attractions, is lacking when 

estimating travel mobility. The current research considers both spatial and temporal dimensions 

to identify key travel patterns and estimate pattern similarity. Because travelers use time 

differently while visiting places, considering time (or temporal) information is critical to better 

understanding travel behavior. The algorithm used in this research provides tourism researchers 

with a method of simultaneously reflecting spatial and temporal information.  

Travel destination is a complex system; it is dynamic and not linear (Zahra & Ryan, 

2007). In this regard, this study adopts graph theory as the foundation of network science, which 

facilitates the investigation of complexity. This research denotes the places visited by travelers as 

vertices and travel flows as directional edges. Trajectory similarity is developed in accordance 



with the different numbers of places visited (variations of vertices) and directions (directed 

networks). In addition to estimating mobility similarity, consistent with the rationale of network 

science, this study demonstrates the heavy-tailed distribution of a destination network, which 

suggests spatial heterogeneity (Jiang, 2018). This implies that a few areas (the coverage of 

cellphone towers) attract a large number of visits while many areas attract few travelers. As a 

result, the application of graph-based spatiotemporal analytics sheds light on the complex 

destination system in general and apprehends similar trajectories according to different vertices 

in particular.  

Most tourism studies have emphasized the first law of geography, called Tobler’s law, 

which states that “everything is related to everything else, but near things are more related than 

distant things” (Taleb, 2007). A number of tourism scholars have demonstrated the suitability of 

this law in explaining the association between travel distance and demands, particularly distance 

decay (Mckercher & Lew, 2003; Zhang, Li, Muskat, & Law, 2020). Importantly, however, the 

current study suggests that Tobler’s law is not necessarily applicable to understanding travel 

movement patterns by presenting variant similarity scores within nationalities denoting travel 

distance. In the consistent vein, Miller (2004) suggests that the advancement of transportation 

and information technology make the world much smaller and more accessible and have an 

influence on the understanding of spatial nearness. Thus, the application of a complex adaptive 

systems theory that emphasizes the importance of local interactions among entities is proposed to 

explain complex global behavior that is not completely predictable or controllable.  

With regard to practical implications, DMOs can obtain immense benefits from 

developing destination management activities from the perspectives of destination marketing and 

planning. The approach to measuring trajectory similarity can be applied to creating destination 



recommendation systems. This finding supports the notion of micro-marketing in tourism 

destinations which aims to provide a better touristic experience through highly personalized and 

customized services (Fesenmaier et al., 2016). Given that travelers who exhibit similar patterns 

have similar preferences, trajectory similarity can be considered a data-driven clustering method. 

With the real-time monitoring system, DMOs can provide customized information and services 

to individuals who demonstrate high similarity in their travel behaviors. Tourism companies 

having larger properties (e.g., integrated resorts or theme parks) could adopt a similar marketing 

strategy (e.g., location-based advertisement) using diverse data sources (e.g., Wi-Fi data, mobile 

app log data). This strategy is fundamental to creating smart destinations that manage tourism 

systems on the basis of big data analytics and IT (Gretzel et al., 2015).  

Destination planning (e.g., transportation, place design, crowdedness control) could be 

another important area in which to apply the dynamic algorithm for calculating movement 

similarity and identifying travelers who exhibit similar patterns. For example, DMOs can create 

new tour products and transportation systems, such as tour buses. In particular, in accordance 

with the notion that graph theory considers the numbers of places visited (i.e., vertices), 

directions (i.e., edges), number of tourist flows (i.e., weighted edges/flows), and temporal 

information (i.e., length of time of moving and staying), this study suggests the number of tour 

buses and their routes and optimizes the time intervals of the bus services to be provided. 

Additionally, such information could help DMOs and tourism enterprises identify several 

necessary locations that could be used for visitor centers, bulletin boards, or any necessary 

tourist-support facilities, thereby improving the quality of tourism offerings at the destination.   

Last but not least, considering the current situation in which the tourism industry has 

suffered substantially due to the COVID-19 pandemic, trajectory similarity is particularly useful 



for DMOs in making decisions to control the crowdedness within destinations to effectively 

control the spread of the disease. DMOs can identify places where travelers are likely to visit, 

which movement patterns are demonstrated, and who is presenting similar patterns; thus, they 

can plan a proactive strategy for preventing the spread of infection in the future, including 

tracking possibly contagious tourists, targeted cleaning and disinfecting, and announcing urgent 

information. This approach demonstrates the advantages of smart tourism destinations in 

managing the safety of travelers and the residents at a destination.   

While this research has made important contributions, there are several limitations. First, 

considering the nature of mobile data, it is difficult to identify the exact locations that travelers 

visited and the activities they engaged in at those places. Thus, the researchers suggest an 

approach to data integration that combines information about behavioral and psychological 

(perceptions) aspects so that comprehensive travel behaviors and experiences can be identified. 

Second, the data analyzed in this study reflects travel mobility in a certain city. In order to test 

the generalizability of the findings and suitability of the pattern recognition algorithm, it is 

suggested that future researchers assess the travel mobility patterns in various contexts of 

destinations and diverse nationalities.  
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Table 1. Example of a user’s mobile data (User ID 1) 

ID Date Longitude Latitude Arrival time Leaving time 

1 20171125 127.*** 35.*** 15:43:00 15:53:00 

1 20171125 127.*** 36.*** 17:06:00 17:17:00 

1 20171125 128.*** 35.*** 18:09:00 19:01:00 

1 20171125 127.*** 35.*** 19:07:00 19:34:00 

 

  



Table 2. The total number of m-length similar trajectory 

The length of similar 

trajectory (m) 

Total number of categories 

of m-length similar 

trajectory 

Total number of m-length 

similar trajectory  

2-length similar trajectory 2,438 515,048 

3-length similar trajectory 2,950 56,962 

4-length similar trajectory 2,349 7,785 

5-length similar trajectory 988 1,426 

6-length similar trajectory 366 417 

7-length similar trajectory 180 187 

8-length similar trajectory 95 97 

9-length similar trajectory 86 87 

 

 

  



 

Figure 1. Flow chart of data analysis 

 

 

  



 

Figure 2. The distribution of the number of International travelers in a year 

  



 

Figure 3. The number of cellphone towers travelers visited in daily trajectory 

 

  



 

Figure 4. International travelers’ length of stay in Jeonju 

 



 

   

Figure 5.  Cumulative distribution function of vertex degree (A) and weighted edge (B) 



 

Figure 6a. Results of 2-length similar trajectory 

  

Jeonju train station

Hanok village area

Deokjin Park



 

Figure 6b. Results of top 20% of 2-length similar trajectory 
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Figure 7a. Results of 3-length similar trajectory Figure 7b. Type A of 3-length similar trajectory

Figure 7c. Type B of 3-length similar trajectory Figure 7d. Type C of 3-length similar trajectory



Figure 8a. Results of 4-length similar trajectory Figure 8b. Type A of 4-length similar trajectory

Figure 8c. Type B of 4-length similar trajectory Figure 8d. Type C of 4-length similar trajectory



 
  

Figure 9a. Results of 5-length similar trajectory Figure 9b. Type A of 5-length similar trajectory Figure 9c. Type B of 5-length similar trajectory



 
 

Figure 10a. Results of 6-length similar trajectory Figure 10b. Type A of 6-length similar trajectory Figure 10c. Type B of 6-length similar trajectory



Figure 11a. Results of 7-length similar trajectory Figure 11b. Type A of 7-length similar trajectory

Figure 11c. Type B of 7-length similar trajectory Figure 11d. Type C of 7-length similar trajectory



Figure 12a. Results of 8-length similar trajectory Figure 12b. Type A of 8-length similar trajectory Figure 12c. Type B of 8-length similar trajectory
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Figure 13. Results of 9-length similar trajectory 2 

 3 

 4 
  5 

Figure 13a. Results of 9-length similar trajectory
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Figure 14. Heatmap analysis of trajectory similarity matching between a pair of nationality 7 
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Figure 15. Clustering result of trajectory similarity matching by country 10 
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